北極星風力發電網訊:1、引言
風力發電機的葉片(下文簡稱葉片)是風電設備將風能轉化為機械能的關鍵部件,其制造成本約占風機總成本的15%——30%。大型風力發電機的葉片基本由復合材料制成,葉片設計與制造是風電機組的技術關鍵。目前,國內多家葉片生產企業都在自主開發新型號葉片,設計中所用的工具也不盡相同。FOCUS軟件是用于風電機組及組件(如葉片)快速設計分析的軟件工具,在國際風電設備工業有超過10年的應用史。相對于使用三維建模軟件和有限元計算軟件結合的設計路線,使用FOCUS軟件更為便捷。
本文通過使用FOCUS軟件對某型號葉片直接完成建模,對其進行了模態和結構靜力學分析,并與實際葉片的模態和靜力試驗結果進行了對比分析。
2、模型建立
擁有獨特的對葉片進行詳細設計的 交互式建模工具。在對葉片進行逐步定義的同時,三維的交互式顯像會對設計變化給出直接反饋。使用FOCUS軟件對本文所研究的葉片進行建模,第一步是通過一系列坐標點定義翼型輪廓線,第二步是在三維空間中設置翼型位置、放大比例、旋轉角度、預彎等來建立氣動外形,第三步是定義材料,第四步是定義鋪層邊界,第五步是根據鋪層邊界和設計厚度定義鋪層,從而完成了風機葉片的建模。 該葉片是由壓力面殼體、吸力面殼體和前后緣兩側抗剪腹板結構組成,其中殼體由蒙皮、大梁、大梁兩側的芯材、后緣增強層和葉根增強層組成,所涉及的主要增強材料包括單軸向布、雙軸向布、三軸向布、Balsa木、PVC泡沫。
3、 重量分析
對該模型提取截面屬性,并通過后處理選擇 葉片重量,得到葉片計算重量分布,見圖1。
從圖1可知,該葉片重量在0——1m處的斜率最大,表明在葉根處的單位重量最大,這是由于葉根段需要達到一定的鋪層厚度滿足打孔需要。其計算重量為7683kg,實際樣片的稱量重量為7675kg,偏差0.1%,二者非常接近,表明模型與 實際一致性好。
4 、模態分析
對該模型進行模態計算,并分別提取了一階 揮舞、二階揮舞、一階擺振和一階扭轉的振型,如圖2——5所示。模型計算頻率與樣片試驗頻率的對比見表1。 從圖2——5和表1可知,樣片試驗的頻率均小于計算頻率,造成偏差的主要原因是樣片整體剛度比設計剛度偏小,但偏差小于5%,符合 GL2010的相關測試要求。
5、 靜力分析
5.1位移分析
在葉片靜力試驗過程中,載荷是通過位于設 定截面的加載夾具,從0%,40%,60%,80%到 100%逐步加載的。對施加100%載荷時,計算位移和試驗位移的對比結果見圖6。圖6中為便于比 較,不考慮位移的方向性,位移數據均取正值。
從圖6可知,沿葉片長度方向共設立了7處位移測試點,主要集中在了葉片的中后部。沿葉片長度方向,葉片位移逐漸增大,且越靠近葉尖,位移增大速度越快,這種趨勢在最大揮舞方向和最 小揮舞方向更為顯著。4個測試方向中,最大揮舞方向比最小揮舞方向的位移大,最大揮舞方向的葉尖位移最大,試驗值為10441mm,計算值為 10456mm,偏差很小僅為-0.015%,說明該模型 能真實地反映葉片受載時的葉尖撓度,該樣片能夠滿足整機設計的凈空需要。4個測試方向中,試驗位移和計算位移高度擬合,最小擺振方向的偏差相對大一些,最大偏差僅為5.08%,小于7%,滿足GL2010的相關測試要求。
5.2應變分析
目視檢查不能監測到的葉片狀態變化,通常可用應變計來監測。對置于葉片壓力面大梁和吸力面大梁位置處的監測點,分別在最大揮舞方向和最小揮舞方向施加100%載荷的應變進行統計,見表2。對置于葉片前緣、后緣位置處的監測點,分別在最大擺振方向和最小擺振方向施加 100%載荷的應變進行統計,見表3。
從表2可知,在承受最大揮舞方向載荷時,葉片壓力面大梁應變為正值,吸力面大梁應變為負值,在L20.0m處的應變最大。在承受最小揮舞方向載荷時,葉片壓力面大梁應變為負值,吸力面大梁應變為正值,在L20.0m處的應變最大。在吸力面大梁L23.5m處的計算應變和試驗應變偏差較大,結合該試驗應變在不同載荷步下的變化情況,認為該應變片失效,應變數據無效。除此之外,計算應變與試驗應變最大偏差為-7.04%,小于10%,符合GL2010規范要求。
從表3可知,在承受最大擺振方向載荷時,葉片前緣應變為負值,葉片后緣應變為正值,同側不同截面的應變變化不大,在L16.0m處的應變最大。在承受最小揮舞方向載荷時,葉片前緣應變為正值,葉片后緣應變為負值,同側不同截面的應變變化不大,前緣在L16.0m處的應變最大,后緣在L23.5m處的應變最大。在后緣L9.0m處的計算應變和試驗應變偏差較大,結合該試驗應變在不同載荷步下的變化情況,認為該應變片失效,應變數據無效。除此之外,計算應變與試驗應變最大偏差為-7.61%,小于10%,符合GL2010規范要求。
6、結論
使用FOCUS軟件進行風電葉片模型搭建, 計算葉片質量,與樣片實測重量相比,偏差僅 0.1%,表明模型搭建合理。 計算頻率和試驗頻率的偏差均小于5%,符合GL2010規范要求。 計算位移和試驗位移的偏差均小于7%,計算應變和試驗應變的偏差除異常點外均小于 10%,符合GL2010規范要求。

找風力發電機+葉片的結構示意圖,發電機,風力發電機葉片的結構,在風機葉片設計中_翼型和結構會直接影響到風力發電機組的功率及性能,風力發電機為什么是三葉片的上中國路面機械網,本網站為你提供風力發電機+葉片的結構示意圖產品信息,包括風力發電機+葉片的結構示意圖品牌,發電機價格,發電機圖片,廠家,產地,材料等,海量的風力發電機+葉片的結構示意圖信息供你參考。
移動版:風力發電機+葉片的結構示意圖
繁體版:風力發電機+葉片的結構示意圖

本發明涉及一種風力發電技術領域,尤其涉及一種風電葉片的根部結構及其制造方法、風電葉片。
背景技術:
隨著環境污染問題的日益嚴重,清潔能源的利用越來越受到重視。而風能作為重要的清潔能源,已經得到了廣泛的應用。風電葉片是風力發電設備的重要部件,通常情況下,需要將風電葉片的根部與輪轂連接。為了捕獲更多風能提高風機發電功率,一般會增加風電葉片尺寸,但風電葉片的長度越大,其根部的彎矩就越大,這就對風電葉片的根部與輪轂的連接強度有了更高的要求。
現有技術中,風機葉片的根部結構也越來越多的采用螺栓套預埋工藝,在風機葉片的本體進行樹脂導入成型之前,在葉片模具的根部位置放入螺栓套并固定,并在螺栓套之間放置楔形條進行填充,在注入樹脂后,使螺栓套與其他結構材料粘結為一體。從而將螺栓套與風電葉片的根部結構連接在一起,使得風電葉片能夠直接通過螺栓與輪轂連接。
以上這種現有風機葉片的根部結構中,楔形條與螺栓套難以緊密貼合,且接觸面較小。使得在注入樹脂后,螺栓套周圍容易形成富樹脂堆積或灌注空腔,而富樹脂堆積或灌注空腔的區域強度和粘合力較低,由于葉片在使用過程中會承受較大載荷,此時,可能會造成螺栓套從葉片根部拔出的情況,導致葉片根部和輪轂的連接處現松動甚至脫落,從而造成設備損壞或引起安全事故。因此,如何避免富樹脂堆積或灌注空腔,以提高產品可靠性是亟待解決的技術問題。
在所述背景技術部分公開的上述信息僅用于加強對本發明的背景的理解,因此它可以包括不構成對本領域普通技術人員已知的現有技術的信息。
技術實現要素:
本發明的目的在于克服上述現有技術的不足,提供一種可避免富樹脂堆積或灌注空腔,以提高產品可靠性的風電葉片的根部結構及其制造方法、風電葉片。
為實現上述目的,本發明采用如下技術方案:
根據本發明的一方面,提供一種風電葉片的根部結構,包括纖維增強復合材料的本體,所述本體內為內嵌體,所述內嵌體包括拼接的多個螺栓套組件和輕質材料的拼合件;多個所述螺栓套組件沿葉根周向間隔布置;所述拼合件包括多個第一拼接體和多個第二拼接體,多個所述第一拼接體和多個所述螺栓套組件一一間隔排列,多個所述第二拼接體一一對應的抵靠在多個所述螺栓套組件朝向風電葉片頂部的一端;各個所述第一拼接體的兩側均形成有凹部,任一所述螺栓套組件和與其抵靠的所述第二拼接體均與所述第一拼接體兩側的所述凹部匹配貼合。
根據本發明的一實施方式,多個所述第一拼接體均包括本部和楔形部,所述楔形部形成于所述本部上靠近所述風電葉片頂部的一端,所述本部兩側均形成有第一凹槽,所述楔形部兩側均形成有第二凹槽,所述第一凹槽和所述第二凹槽貫通形成所述凹部,所述第一凹槽與所述螺栓套組件匹配貼合,所述第二凹槽與所述第二拼接體匹配貼合。
根據本發明的一實施方式,所述螺栓套組件包括螺栓套和玻璃纖維層,所述螺栓套包括套體、第一凸臺和多個第二凸臺,所述第一凸臺形成于所述套體的側面上遠離所述第二拼接體的一端,多個所述第二凸臺沿遠離所述第一凸臺的方向依次形成于所述套體的側面上,且所述第二凸臺小于所述第一凸臺,所述玻璃纖維層包覆并貼合所述螺栓套側面上除所述第一凸臺外緣以外的區域,且所述玻璃纖維層外表面與所述第一凸臺外緣平齊。
根據本發明的一實施方式,所述螺栓套的至少一個所述第二凸臺為錐形結構,且所述錐形結構的小端朝向所述第二拼接體設置。
根據本發明的一實施方式,所述螺栓套靠近所述第二拼接體一端為封閉結構。
根據本發明的一實施方式,所述第二拼接體沿所述本體的徑向設有多個徑向孔,所述本體與多個所述徑向孔對應的位置形成有延伸至多個所述徑向孔內的多個延伸部。
根據本發明的一實施方式,多個所述徑向孔陣列分布于所述第二拼接體上。
根據本發明的一實施方式,所述螺栓套為圓形螺栓套,且所述螺栓套組件為圓柱形結構,所述第一凹槽的表面為圓弧形面。
根據本發明的另一方面,提供一種風電葉片的根部結構的制造方法,用于制造本發明的風電葉片的根部結構,包括如下步驟:
提供一可用于成型風電葉片的根部結構的模具;
鋪設外玻璃纖維層,在所述模具內與所述根部結構外壁對應的位置鋪設外玻璃纖維層;
安裝螺栓套組件,將所述螺栓套組件置于所述外玻璃纖維層上并保持固定;
安裝第二拼接體,將第二拼接體抵靠于所述螺栓套組件靠近風電葉片頂部的一端;
安裝第一拼接體,在所述螺栓套組件的兩側分別放置第一拼接體,使所述第一拼接體的凹部表面與螺栓套組件匹配貼合;
重復所述安裝螺栓套組件步驟和所述安裝第一拼接體步驟,直至安裝完所有的所述螺栓套組件、所述第二拼接體和所述第一拼接體;
鋪設內玻璃纖維層,所述內玻璃纖維層覆蓋所述螺栓套組件、所述第一拼接體和所述第二拼接體;
灌注成型,向所述模具內灌注樹脂,加熱固化。
根據本發明的再一方面,提供一種風電葉片,本發明的風電葉片的根部結構風電葉片風。
由上述技術方案可知,本發明具備以下優點和積極效果中的至少之一:通過所述第一拼接體可將所述螺栓套組件和所述第二拼接體夾緊定位。由于任一所述螺栓套組件和與其抵靠的所述第二拼接體均與所述第一拼接體兩側的所述凹部匹配貼合,即任一所述螺栓套組件和與其抵靠的所述第二拼接體均與所述第一拼接體的兩側隨形貼合,從而有利于增大所述螺栓套組件和所述第一拼接體的接觸面;也有利于增大所述第二拼接體和所述第一拼接體的接觸面。避免在注入樹脂后,在所述螺栓套組件周圍形成富樹脂堆積或灌注空腔,從而有利于增大所述螺栓套組件和周圍材料的粘合力,降低了所述螺栓套組件從所述根部結構拔出的風險。同時,由于所述螺栓套組件和所述第一拼接體的接觸面增大,使得所述螺栓套組件和所述第一拼接體間的摩擦力增大,從而進一步降低所述螺栓套組件從所述根部結構拔出的風險。從而可提高產品的可靠性,也就是使所述根部結構和具有所述根部結構的風電葉片更加可靠,此外,由于所述拼合件包括多個第一拼接體和多個第二拼接體,便于成型制造,并可分別獨立安裝,方便操作。所述內嵌體包括拼接的多個螺栓套組件和所述拼合件,所述拼合件與所述螺栓套組件互相夾緊,不易松脫,使得內嵌體的結構緊湊、穩固,有利于進一步提高產品可靠性,且便于制造。
附圖說明
通過參照附圖詳細描述其示例實施方式,本發明的上述和其它特征及優點將變得更加明顯。
圖1是本發錦工電葉片的根部結構一實施方式的局部結構示意圖;
圖2是圖1中的根部結構的局部剖視圖;
圖3是圖1中的根部結構的內部的局部結構示意圖;
圖4是圖1中第一拼接體的第一示例的結構示意圖;
圖5是圖1中第一拼接體的第二示例的結構示意圖;
圖6是圖1中第一拼接體的第三示例的結構示意圖;
圖7是圖1中第一拼接體的第四示例的結構示意圖;
圖8是圖1中第二拼接體的第一示例的結構示意圖;
圖9是圖1中第二拼接體的第二示例的結構示意圖;
圖10是圖1中螺栓套的第一個示例的結構示意圖;
圖11是圖10中的螺栓套的剖視圖;
圖12是圖1中螺栓套的第二個示例的結構示意圖;
圖13是圖12中螺栓套的剖視圖;
圖14是圖1中螺栓套的第三個示例的結構示意圖;
圖15是圖14中螺栓套的剖視圖;
圖16是本發錦工電葉片的根部結構的制造方法一實施方式的流程圖;
圖17是圖16的制造方法中安裝完所有的螺栓套組件、第二拼接體和第一拼接體的后局部結構示意圖;
圖18是圖16的制造方法中灌注成型后的結構示意圖。
圖中:1-本體;11-外玻璃纖維層;12-內玻璃纖維層;2-螺栓套組件;21-螺栓套;201-內螺紋;211-套體;212-第一凸臺;213-第二凸臺:22-玻璃纖維層;3-第一拼接體;301-凹部;311-第一凹槽;321-第二凹槽;31-本部;32-楔形部;4-第二拼接體;5-葉片模具。
具體實施方式
現在將參考附圖更全面地描述示例實施方式。然而,示例實施方式能夠以多種形式實施,且不應被理解為限于在此闡述的實施方式;相反,提供這些實施方式使得本發明將全面和完整,并將示例實施方式的構思全面地傳達給本領域的技術人員。圖中相同的附圖標記表示相同或類似的結構,因而將省略它們的詳細描述。
雖然本說明書中使用相對性的用語,例如“上”“下”來描述圖標的一個組件對于另一組件的相對關系,但是這些術語用于本說明書中僅出于方便,例如根據附圖中所述的示例的方向。能理解的是,如果將圖標的裝置翻轉使其上下顛倒,則所敘述在“上”的組件將會成為在“下”的組件。其他相對性的用語,例如“高”“低”“頂”“底”“前”“后”“左”“右”等也作具有類似含義。當某結構在其它結構“上”時,有可能是指某結構一體形成于其它結構上,或指某結構“直接”設置在其它結構上,或指某結構通過另一結構“間接”設置在其它結構上。
本權利要求書中,用語“一個”、“一”、“該”、“所述”和“至少一個”用以表示存在一個或多個要素/組成部分/等;用語“包含”、“包括”和“具有”用以表示開放式的包括在內的意思并且是指除了列出的要素/組成部分/等之外還可存在另外的要素/組成部分/等;用語“第一”、“第二”和“第三”等僅作為標記使用,不是對其對象的數量限制。
圖1是本發錦工電葉片的根部結構一實施方式的局部結構示意圖,圖2是圖1中的根部結構的剖視圖,圖3是圖1中的根部結構的內部的局部結構示意圖,如圖1至圖3所示,本實施方式所述的根部結構,包括纖維增強復合材料的本體1,本體1內為內嵌體,內嵌體包括拼接的多個螺栓套組件2和輕質材料的拼合件;拼合件包括多個第一拼接體3和多個第二拼接體4。本發明實施例中內嵌體是由多個預制部件拼合而成,內嵌體中各部件可規則地緊密貼合,且各部件間也可選擇設有一定的卡合定位結構,不僅可避免富樹脂堆積或灌注空腔,還能以內嵌體來整體提升葉根結構的結構強度,提升各螺栓套組件2與本體1纖維增強復合材料結合強度的穩定性。且,在本體1纖維增強復合材料成型時,能與纖維增強復合材料強力地結合為一體。
在本實施方式中,多個螺栓套組件2沿葉根周向間隔布置于本體1內,相鄰兩個螺栓套組件2不接觸;同時,多個第一拼接體3和多個螺栓套組件2一一間隔排列,即相鄰兩個螺栓套組件2之間具有一第一拼接體3,相鄰兩個第一拼接體3間具有一螺栓套組件,多個螺栓套組件2和多個第一拼接體3互相夾緊;多個第二拼接體4一一對應的抵靠在多個螺栓套組件2朝向風電葉片頂部的一端,即任一螺栓套組件2朝向風電葉片頂部的一端均抵靠有一個第二拼接體4;螺栓套組件2內可形成有內螺紋201,且內螺紋201位于螺栓套組件2朝向風電葉片頂部的一端內。
在本實施方式中,各個第一拼接體3的兩側均形成有凹部301,使第一拼接體3為工字型結構,且相鄰兩個第一拼接體3的凹部301相對。任一螺栓套組件2均與其兩側的第一拼接體3的凹部301匹配貼合,所述匹配貼合的意思是螺栓套組件2的表面與凹部301的表面貼合;同時,其螺栓套組件2抵靠的第二拼接體4也與第一拼接體3兩側的凹部301匹配貼合,也就是說,相鄰兩個第一拼接體3的凹部301同時夾持有一個螺栓套組件2和與其抵靠的第二拼接體3,從而將螺栓套組件2和第二拼接體3固定,并使接觸面最大化。
在本實施方式中,為了適應風電葉片根部的漸縮的形狀,即本體1為漸縮的形狀,多個第一拼接體3均可包括本部31和楔形部32,楔形部32形成于本部31上靠近風電葉片頂部的一端。為了同時適應螺栓套組件2和第二拼接體4的外形,本部31兩側均形成有第一凹槽311,且第一凹槽311可與螺栓套組件2形狀和尺寸相匹配,楔形部32兩側均形成有第二凹槽321,且第二凹槽321與第二拼接體4的形狀和尺寸相匹配,第一凹槽311和第二凹槽321貫通形成凹部301,使得同一凹部301可同時匹配貼合螺栓套組件2和與其抵靠的第二拼接體4,即第一凹槽311與螺栓套組件2匹配貼合,第二凹槽321與第二拼接體4匹配貼合,結構簡單,便于安裝。
在本實施方式中,第一拼接體3可以有多種實施方式,以下舉例說明:
如圖4所示,圖4為圖1中第一拼接體3的第一個示例的結構示意圖,第一拼接體3整體可為直角梯形結構,楔形部32位于該直角梯形結構具有斜面的一端,本部31為另一端,第一凹槽311和第二凹槽321為直徑相同的弧形槽,從而形成表面光滑的凹部31。
如圖5所示,圖5為圖1中第一拼接體3的第二個示例的結構示意圖,第一拼接體3的本部31為長方體結構,所述長方體結構的兩側形成有第一凹槽311,楔形部32為直角梯形結構,所述直角梯形結構的側面與本部31與所述楔形部32對接的端面間的區域即為第二凹槽321。
如圖6所示,圖6為圖1中第一拼接體3的第三個示例的結構示意圖,如圖7所示,圖7為圖1中第一拼接體3的第四個示例的結構示意圖。其中,第一拼接體3的第三個示例和第四個示例的結構與第一個示例相似。區別在于,如圖5所示,所述第一個示例中的楔形部32的斜面可被一內凹的曲面替代以形成所述第三個示例;或者,如圖6所示,所述第一個示例中的楔形部32的斜面還可被一曲面和平面相拼接的表面替代以形成所述第四個示例,其他結構在此不再贅述。
在本實施方式中,第二拼接體4可以有多種實施方式,以下舉例說明:
圖8為圖1中第二拼接體4的第一個示例的結構示意圖。如圖8所示,第二拼接體4為圓柱狀結構,該圓柱狀結構的一端面為斜面,具體可為一圓柱經斜切后形成的結構;
圖9為圖1中第二拼接體4的第二個示例的結構示意圖。如圖9所示,第二拼接體4為直角梯形結構。
在本實施方式中,由于第二拼接體4需要與第一拼接體3的凹部31匹配。因此,第一拼接體3的各個示例不能和第二拼接體4的各個示例自由組合,需要選擇可相互匹配的第一拼接體3和第二拼接體4,例如,第一拼接體3的第一個示例、第三個示例和第四個示例均可與第二拼接體4的第一個示例匹配,第一拼接體3的第二種示例可與第二拼接體4的第二個示例匹配。
需要說明的是,當采用圖7所示的第二拼接體4時,可在第二拼接體4表面包裹玻璃纖維布,可防止第二拼接體4松動。
在本實施方式中,第一拼接體3和第二拼接體4均可采用PET、PVC、木材或者竹子等輕質材料,在進行填充和固定的同時,有利于減輕重量,降低成本。
在本實施方式中,螺栓套組件2可包括螺栓套21和玻璃纖維層22,螺栓套21包括套體211、第一凸臺212和多個第二凸臺213,內螺紋201形成于螺栓套21內。
第一凸臺212形成于套體211的側面上遠離第二拼接體4的一端,多個第二凸臺213沿遠離第一凸臺211的方向依次間隔形成于套體211的側面上,即在套體211上形成多圈凸臺,且第二凸臺213小于第一凸臺211。
玻璃纖維層22包覆并貼合螺栓套21側面上除第一凸臺212外緣以外的區域,且玻璃纖維層22外表面與第一凸臺212外緣平齊,螺栓套21可做噴砂處理,提高表面粗糙度,使螺栓套21與玻璃纖維層22結合的更加牢靠,有利于防止拔出。從而可通過玻璃纖維層22使螺栓套21更加穩固,且由于第一凸臺211位于距離第二拼接體4的一端,即遠離風電葉片頂部的一端,第一凸臺211的端面位于所述風電葉片的根部結構最外側。因此,使玻璃纖維層22包覆并貼合螺栓套21側面上除第一凸臺212外緣以外的區域,可防止玻璃纖維層22完全位于本體1內,避免露出,防止玻璃纖維層22露出的部分翹起或損壞而導致玻璃纖維層22被拖出或損壞。
在本實施方式中,玻璃纖維層22的結構也有多種,但不以此為限,例如:可采用玻璃纖維布覆蓋包裹螺栓套21側面上除第一凸臺212外緣以外的區域,填滿第二凸臺213間的空隙,并使玻璃纖維布2外表面與第一凸臺212外緣平齊;還可采用成型工藝利用玻璃纖維材料直接在螺栓套21上形成玻璃纖維層21;或者還可以采用玻璃纖維材質的粗紗,通過在螺栓套21上纏繞所述粗紗形成玻璃纖維層21。由于粗紗的成本較低,且操作簡單,并有利于與螺栓套緊密貼合,不易存在間隙,因此,玻璃纖維層22可由纏繞的玻璃纖維的粗紗形成。
在本實施方式中,螺栓套21上的第二凸臺23有多種形式,例如:如圖10和圖11所示,圖10是圖1中螺栓套的第一個示例的結構示意圖,圖11是圖10中的螺栓套的剖視圖,第二凸臺23可為環形結構,且第二凸臺23的徑向截面為梯形。
螺栓套21的至少一個第二凸臺23為錐形結構,且錐形結構的小端朝向第二拼接體4設置,即朝向風電葉片的頂部的方向,形成倒鉤形結構,從而可進一步防止螺栓套21拔出,進一步提高可靠性。具體如圖12和圖13所示,圖12是圖1中螺栓套的第二個示例的結構示意圖;圖13是圖12中螺栓套的剖視圖,螺栓套21各個第二凸臺23均為上述的錐形結構;如圖14和圖15所示,圖14是圖1中螺栓套的第三個示例的結構示意圖;圖15是圖14中螺栓套的剖視圖;螺栓套21部分第二凸臺23為上述的錐形結構,另一部分第二凸臺23與螺栓套21的第一個示例中的第二凸臺23相同。
在本實施方式中,螺栓套21靠近第二拼接體4一端為封閉結構,具體可通過焊接堵頭、預埋螺釘,使用密封件過盈配合等密封方式進行密封,但不限于此,從而防止灌注的樹脂進入螺栓套21內覆蓋內螺紋201,避免造成螺栓與螺栓套21無法配合,有利于保證風電葉片的根部結構與輪轂的正常安裝。
在本實施方式中,第二拼接體4沿本體1的徑向設有多個徑向孔(圖中未示出),且各個所述徑向孔形狀均可以為圓形或其它形狀,徑向孔的目的是利于在生產中采用真空灌注成型工藝進行制造葉片根部。
在本實施方式中,多個所述徑向孔可陣列分布于第二拼接體4上,例如,多個所述徑向孔可成矩形陣列(徑向孔的目的是方便生產與受力無關)。
在本實施方式中,多個所述徑向孔的直徑可約為2mm,但不以此為限,同時,多個所述徑向孔可成矩形陣列分布,即多個所述徑向孔可排成多行和多列,且每一行和每一列的所述徑向孔中,相鄰兩個所述徑向孔的間距為20mm。
在本實施方式中,螺栓套21和螺栓套組件2的形狀可以有多種,但不以此為限,例如:螺栓套21可方形螺栓套,螺栓套組件2也為方形結構,或者螺栓套21也可為圓形螺栓套,且螺栓套組件2為圓柱形結構。
但由于方形螺栓套制造工藝較為復雜,且在內徑相同的情況下,方形螺栓套相較于圓形螺栓套的用料更多,使得因而重量更大,且方形螺栓套具有棱角,各處受力情況復雜,難以保證均勻受力,容易局部受損。因此,優選螺栓套21也為圓形螺栓套,且螺栓套組件2為圓柱形結構。
當螺栓套21也為圓形螺栓套,且螺栓套組件2為圓柱形結構時,第一拼接體3的第一凹槽311的表面相應的優選圓弧形面,具體可參照第一拼接體3的第一個示例和第二個示例,以便匹配。
如圖16所示,圖16是本發錦工電葉片的根部結構的制造方法一實施方式的流程圖,所述制造方法用于制造所述風電葉片的根部結構,所述制造方法包括如下步驟:
S1、提供一可用于成型風電葉片的根部結構的模具5;
S2、鋪設外玻璃纖維層11,在模具5內與根部結構外壁對應的位置鋪設外玻璃纖維層11;
S3、安裝螺栓套組件2,將螺栓套組件2置于外玻璃纖維層11上并保持固定;
S4、安裝第二拼接體4,將第二拼接體4抵靠于螺栓套組件2靠近風電葉片頂部的一端;
S5、安裝第一拼接體3,在螺栓套組件2的兩側分別放置第一拼接體3,使第一拼接體3的凹部301表面與螺栓套組件2匹配貼合;
S6、重復步驟S3-步驟S5,直至安裝完所有的螺栓套組件2、第二拼接體4和第一拼接體3,如圖17所示;
S7、鋪設內玻璃纖維層12,內玻璃纖維層12覆蓋螺栓套組件2、第一拼接體3和第二拼接體4;
S8、灌注成型,向模具5內灌注樹脂,加熱固化,外玻璃纖維層11可用于形成本體1的外壁,內玻璃纖維層12可用于形成本體1的內壁,如圖18所示。
在本實施方式中,第一拼接體3可采用拉擠工藝制備,并保持表面粗糙,以增大摩擦力,表面處理的方式可采用脫模布拉擠成型,或者也可以直接進行打磨。
在本實施方式中,可將螺栓套組件2固定在專用的法蘭或其他工裝上,然后再將螺栓套組件2置于外玻璃纖維層11上,通過保持法蘭或其他工裝固定即可使螺栓套組件2在外玻璃纖維層11上保持固定。
本發明實施例還提供了一種風電葉片,所述風電葉片包括上述任一實施例所述的風電葉片的根部結構。
本發明實施例的風電葉片的根部結構及其制造方法、風電葉片,通過所述第一拼接體可將所述螺栓套組件和所述第二拼接體夾緊定位。由于任一所述螺栓套組件和與其抵靠的所述第二拼接體均與所述第一拼接體兩側的所述凹部匹配貼合,即任一所述螺栓套組件和與其抵靠的所述第二拼接體均與所述第一拼接體的兩側隨形貼合,從而有利于增大所述螺栓套組件和所述第一拼接體的接觸面;也有利于增大所述第二拼接體和所述第一拼接體的接觸面。避免在注入樹脂后,在所述螺栓套組件周圍形成富樹脂堆積或灌注空腔,從而有利于增大所述螺栓套組件和周圍材料的粘合力,降低了所述螺栓套組件從所述根部結構拔出的風險。同時,由于所述螺栓套組件和所述第一拼接體的接觸面增大,使得所述螺栓套組件和所述第一拼接體間的摩擦力增大,從而進一步降低所述螺栓套組件從所述根部結構拔出的風險。從而可提高產品的可靠性,也就是使所述根部結構和具有所述根部結構的風電葉片更加可靠,此外,由于所述拼合件包括多個第一拼接體和多個第二拼接體,便于成型制造,并可分別獨立安裝,方便操作。所述內嵌體包括拼接的多個螺栓套組件和所述拼合件,所述拼合件與所述螺栓套組件互相夾緊,不易松脫,使得內嵌體的結構緊湊、穩固,有利于進一步提高產品可靠性,且便于制造。
應可理解的是,本發明不將其應用限制到本說明書提出的部件的詳細結構和布置方式。本發明能夠具有其他實施方式,并且能夠以多種方式實現并且執行。前述變形形式和修改形式落在本發明的范圍內。應可理解的是,本說明書公開和限定的本發明延伸到文中和/或附圖中提到或明顯的兩個或兩個以上單獨特征的所有可替代組合。所有這些不同的組合構成本發明的多個可替代方面。本說明書所述的實施方式說明了已知用于實現本發明的最佳方式,并且將使本領域技術人員能夠利用本發明。

原標題:風電葉片知多少?
北極星風力發電網訊: 解落三秋葉,能開二月紅;過江千尺浪,入竹萬竿斜。你猜,這是在描述什么呢?
是的,這就是風,這份大自然的美麗與特殊。我們領略過吹面不覺寒的和煦春風,也見識過風勁角弓鳴的威力,而風能早已漸漸走進我們的生活。
風能利用的歷史
人類最早利用風能要追溯到波斯人利用垂直軸風機的碾磨;到了中世紀,北歐人利用水平軸風機驅動帆船航行;19世紀的美國,人們開始利用風力機提水灌溉。
風力機用于提水
到1887年,美國人Charles F.Brush建造了第一臺風力發電機組,此后,經過長達一個多世紀的艱辛探索,不斷的技術革新和應用的考驗,才發展成今天的主流的上風向、水平軸、三葉片的塔式風力發電機,也使得風力發電成為風能利用主導方向。
主流風力機
隨著傳統化石能源的不可持續以及對全球環境的持續危害,以風力發電為主流的新能源已經成為世界各國優先和大力發展的替代能源。
風電葉片是風電機組中將自然界風能轉換為風力發電機組電能的核心部件,也是衡量風電機組設計和技術水平的主要依據。
風電葉片的發展歷程
由于機組功率容量很小,早期的風力發電機大多采用木質葉片,使用強度較好的整體木方做葉片縱梁來承擔葉片在工作時所必須承受的力和彎矩,但木制葉片不易扭曲成型,且強度不高,在潮濕環境下也容易腐蝕;加之隨著葉片尺寸的增加,木制葉片越來越無法滿足大、中型風力發電機的要求,因此,木制葉片開始逐漸被其他材料所取代。
木質葉片
近代,葉片開始采用鋼管或型鋼做縱梁、鋼板做肋梁,內填泡沫塑料外覆玻璃增強蒙皮的結構形式,鋼梁結構承受絕大部分載荷,玻璃鋼蒙皮形成氣動外形,葉片縱梁的鋼管及型鋼從葉根至葉尖的截面逐漸變小,以滿足扭曲葉片的要求并減輕葉片重量。
鋼質葉片
隨著鋁合金材料在飛機機翼上的成功應用,由于機翼結構具有與風電葉片相似的受力和外形特征,因此引發了科學家對鋁合金在風電葉片應用的濃厚興趣。
用鋁合金擠壓成型的等弦長葉片易于制造,可連續生產,又可按設計要求的扭曲進行扭曲加工,葉根與輪轂連接的軸及法蘭可通過焊接或螺栓連接來實現。與此同時,鋁合金葉片也存在諸多弊端,雖然鋁合金葉片重量輕、易于加工,但難以加工成從葉根至葉尖漸縮的葉片,此外,鋁合金材料在空氣中的氧化和老化問題,也對葉片的保養和后期維護提出了挑戰,難以滿足風機葉片長時間運行的要求。
鋁合金葉片
上世紀50年代,纖維增強復合材料原材料體系被逐步開發,其潛在性能優勢不斷被發掘,隨著應用技術的積累,長纖維增強聚合物基復合材料以其優異的力學性能、工藝性能和耐環境侵蝕性能,成為當今大型風力發電機葉片材料的首選。
聚合物基復合材料是由高分子聚合物(環氧樹脂、不飽和樹脂等)通過一定的成型工藝滲入長度不同的玻璃纖維或碳纖維而做成的增強塑料。
玻璃纖維(左)和碳纖維(右)
現階段大型葉片一般采用真空吸注成型工藝,該工藝利用玻璃纖維和泡沫結構層的真空吸入常壓下的液態環氧樹脂,然后加熱使樹脂固化,被樹脂浸潤的纖維結構隨即成為一個整體結構即復合材料葉片。與傳統金屬材料葉片制造工藝相比,真空吸注工藝生產效率更高、性能亦可根據設計纖維的方向自由調控,材料與結構一體化成型、產品尺度限制小,特別適合制造大型高強度結構件,故而成為現今風電葉片的主導制造工藝。
復合材料真空吸注工藝
現代葉片經歷了從實心葉片結構向中空的結構轉變。目前,葉片大多為箱型或者工字型主承力結構加上輕質的氣動外形組成,其中承力結構位于翼型的最大厚度附近,這部分結構承受絕大部分外載荷。其他位置則為薄的殼體結構或者泡沫夾芯結構,這部分主要提供準確、光順的氣動外形,從而在保證葉片結構穩定性的同時降低葉片質量。由于風沙、雨水侵蝕和冰雹的侵蝕,為了保持葉片氣動外形和保護葉片承力結構20年以上的使用壽命,葉片表面通常還需要涂覆防護油漆或樹脂。
葉片截面結構
葉片材料的應用趨勢
為了捕獲更多風能、降低度電成本,海上風資源的開發受到越來越多國家的青睞,其具有風速平穩,湍流度小,距離用電負荷中心近等優勢。
為了降低維護和基礎建設成本,海上風電機組單機容量通常比陸上機組更大,所使用的葉片更長。2020年,丹麥LM公司生產了世界上最長的葉片,單只葉片長度達88.4米。
世界最長的風力渦輪機葉片LM 88.4 P(圖片來自相關報道)
由于海上風電葉片的嚴苛要求,現在大規模使用的玻璃纖維增強復合材料已難以獨立勝任。相較之下,碳纖維復合材料葉片的剛度為玻璃纖維復合葉片的兩至三倍,極限和疲勞性能都優于玻璃纖維復合材料,是名副其實的高性能材料。盡管碳纖維復合材料的性能大大優于玻璃纖維復合材料,但因價格昂貴,影響了它在風電葉片上大范圍應用。然而,碳纖維復合材料的應用已成為趨勢,隨著葉片長度的進一步延伸,碳纖維復合材料將成為超長葉片材料的不二選擇。
大型海上風電機組
?。?/p>
山東錦工有限公司
地址:山東省章丘市經濟開發區
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務電話:15066131928
